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Following Flaschka and Newell, the inverse problem for Painleve IV is formu- 
lated with the help of similarity variables. The Painleve IV arises as the eliminant 
of the two second-order ordinary differential equations originating from the 
nonlinear SchrSdinger equation. Asymptotic expansions are obtained near the 
singularities at zero and infinity of the complex eigenvalue plane. The correspond- 
ing analysis then displays the Stokes phenomena. The monodromy matrices 
connecting the solution Yj in the sector Sj to that in Sj+ 1 are fixed in structure 
by the imposition of certain conditions. It is then shown that a deformation 
keeping the monodromy data fixed leads to the nonlinear SchrSdinger equation. 
While Flaschka and Newell did not make any absolute determination of the 
Stokes parameters, the present approach yields the values of the Stokes para- 
meters in an explicit way, which in turn can determine the matrix connecting 
the solutions near zero and infinity. Finally, it is shown that the integral equation 
originating from the analyticity and asymptotic nature of the problem leads to 
the similarity solution previously determined by Boiti and Pampinelli. 

1. I N T R O D U C T I O N  

Recent ly  two impor tan t  bu t  parallel  theories have been  developed for 
the complete  analysis  of non l i nea r  partial  differential equations.  One is the 
method of  the inverse scattering t ransform (IST) (Eilenberger,  1981) and  
the other is that  of  m o n o d r o m y  deformat ion  (MD) (Chudnovsky,  1982). 
While several authors  have enriched the subject of  IST, the cont r ibut ions  
to the field of  M D  are relatively few. The only exhaustive approach  is that 
of  Kyoto school (Ueno  and  Date,  1973a,b; J imbo and  Miwa, 1980). ~ o t h e r  
approach  is that  of  Flaschka and  Newell  (1979). While the method  of the 
Japanese  school is relatively abstract,  being based on inf in i te -d imensional  
Lie algebra,  that  of  F laschka  and  Newell  (FN)  is more concrete and  oriented 
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to special nonlinear equations through its connection to the special class 
of Painleve equations. One elegant aspect of the approach of FN is that it 
exhibits very clearly how the asymptotic expansion can be used in conjunc- 
tion with analyticity arguments to analyze the Stokes phenomena, and hence 
the monodromy deformation problem. 

In this paper we make a departure from the treatment of FN. In their 
paper, the absolute determination of the Stokes parameters was not possible, 
but here we show that by taking account of a classical analysis of Sibuya, 
itis possible to find the explicit values of the Stokes constants. These values 
can then be used in the equations determining the matrix connecting the 
solution vector near zero and infinity, for their determination [see equation 
(31) in Section 3]. In this connection it can be noted that almost all the 
integrable nonlinear equations reduce to some Painleve transcendents 
through the similarity variables. On the other hand, the nonlinear Schr6din- 
ger equation reduces to a pair of coupled ordinary equations equivalent to 
the Painleve IV, as shown by Boiti and Pampinelli (1979, 1980a,b). Here 
we apply the methodology of FN, slightly amended by incorporating the 
theory of Sibuya, to the case of Painleve IV. At this point we may point 
out that though the work of Ueno and Date (1973a,b) and Jimbo and Miwa 
(1980) encompasses all the Painleve equations, the formalistic nature of 
their approach is quite difficult to appreciate in terms of the results of any 
particular equation. On the other hand, our approach is of a pedagogical 
nature and clearly indicates the ways to circumvent the difficulties 
encountered in an analysis of the problem. 

2. FORMULATION 

The nonlinear Schr6dinger equation (NLSE) under consideration reads 

iqt - q =  = •  * (1) 

The AKNS inverse problem pertaining to equation (1) is 

Vl~ = - i ~ '  Vl + qv2 
(2) 

along with 

v l ,  = A v l  + By2  (3) 

~)2t -~" C1Q1.3r D v  2 

where A, B, C, and D are well-known functions of q, r, ~', and for the 
NLSE we assume q = r*. The similarity variable, which can be found either 
by a Lie point symmetry analysis or by a scaling argument, is given as 

z = x t - 1 / 2 ;  q ( x ,  t)  = t l / 2 4 ~ ( x / ? / 2 )  
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We then conver t  equat ion  (1) to the ord inary  nonl inear  coupled  system of  
differential equat ions  

/ +iz \ d ~bz ~'q~)=• * (4) 
dz 

The main  trick o f  F N  is to conver t  the lax pa i r  (2) and (3) to such variables,  
for  which we set 

t~ = ; IA = v ( x t  -1 /2 ,  ff ' t  1/2) = V(Z,  ~)  V 2 

so that  we have  

vl = - i ~ v  I + r 2 

2 @ v2+ 6 *vl (5) 

(6) 
2 _ _ -4q~*+  + 2i~b~b* 

so that  in matr ix  fo rm we can set 

where  

- iz -4q~ A~ i -04i)' Al=(-4~b* iz ) 

Ae=2i[  chc~* -(q~+liz~)~ 
\(6"-�89162 -r162 : 

Equat ions  (5) and (7) fo rm the basis o f  the asympto t ic  expans ion  that  we 
pe r fo rm in the next  section. 

3. A S Y M P T O T I C  E X P A N S I O N  

For  the cons t ruc t ion  of  the asympto t ic  expans ion ,  we set near  g = 0 

v = [exp(ao~o2+ alq~)]~p ~ ~ Ck~ -k (8) 

so that  

v~ = ( 2ao~P + al + IZ ; k) ~ exp( aoq~ 2 + aa q~ ) ~ ck~ -k 
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Then from equation (7) we get 

(2ao~o + al alq~)]q~ ~ F, ck~ -k 

= (Aoq~+Al+A2~-~)[exp(ao~2+al~o)]q~" ~ Ck~O -k (9) 

Equating different powers of ~p in (9), we construct equations for ck, which 
can be solved to yield the two independent sets of solutions 

/~oo(1, z, ~0)- exp(2iq~ 2 -  iz~o) 

�89162 ,/ " . . }  (10) 

~o(2, z, 9 ) ~  exp(-2ig o2+ izgo) 

-r162189162162 �9 (11) 
At this point it is interesting to note an identity that will be useful later. 
From equation (4) we note that 

iz , =2i [ r 1 6 2  r 1 6 2  r162  r d z + c  (12) 

To obtain the asymptotic expansion near q~ =0,  we put ~ = l / r /  and let 
77 ~ oo in equation (7). Then (7) is transformed to 

V n = -[3271-~+ 317/-2 + 3o"i/-3] V (13) 

We then set 

V = 77 Ix ~. CkT~ - k  

so that we get 

t-~ - k ,1~ ~ Ckrl- k = -(Ae~7-' + A1 "/7 - 2 +  Aor/-3) ~7" ~ CkT1 -k 
~7 

Then the degeneracy condition for Co leads to the following equation for/~: 

det[A2 + I/~] = 0 (14) 

from which we obtain 

iz 

But we observe an important fact: 

a .  2 
- 0  if r162 = const (16) 

dz 
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So the set of solutions near ~o = 0 is 

~o(1, z, ~) 

=e"(x)q~-2k{(i(4)z+�89 1- - -~  \ y z / + "  �9 "} 

where 

and 

�9 iz . - (2i&o~*W2k- 1) 
i4,4,* + k ] 

X(iz-4iqS* (az+�89 
iea4, * + k /  

767 

(17) 

i(49z+lizdp)/(�89 ) + . . .  (18) 

where u(z) is the normalizing factor for the solution near ~0 = 0, and is 
given as 

u= I (adz; u*= I 4)*dz 
The factors in the above expressions can be simplified if we use equation 

(15), but we prefer to keep the general structure�9 At this point we mention 
some important features of equations (5) and (6): 

1. If  v(1, q~, z) is a solution, then My*(1, q~*, z) is also a solution. 
2. I f  M~*(2, ~o*, z) is a solution, then ~(2, q~, z) is another solution, 

where M = (o o~), and v(n, ~, z) denotes the solution vector (vl, v2), 
with n indicating the first or second type of solution. 

4. R E G I O N S  OF G R O W T H  A N D  D E C A Y  

The next step in our analysis is the segregation of zones in the complex 
q~ plane, where the solutions defined in Section 2 show a definite pattern 
of dominancy or subdominancy. From expressions (10) and (11) we can 
make the important inferences listed in Table I. Figure 1 shows this division 
of the complex eigenvalue plane into several sectors. The lines in the q~ 
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T a b l e  I 

0 -  < a r g  ~ < ~ ' / 2  v I l a rge  /3 2 s m a l l  

~ ' / 2  -< a r g  ~ < ~" v 1 s m a l l  v 2 l a r g e  

7r_< a r g  ~o < 3~ - /2  v I l a rge  v 2 s m a l l  

3 ~ r / 2 - < a r g  q~ < 2 7 r  v ~ s m a l l  v 2 l a rge  

2~r -< a r g  (p < 2~- + 6 v 1 l a rge  v 2 s m a l l  

plane originating from the origin on which the solution is maximally 
dominant or recessive are called Stokes lines. In the above situation 

arg q~ = ir/4, 31r/4, 5~r/4, 71r/4 

are Stokes lines and the sectors are defined as 

Sj = ~ J -  1/2~-< arg ~ <j~r/2 for some p with j = 1, 2 

The anti-Stokes lines are 

arg ~ --0, Ir/2, ~, 3~r/2, 27r 

In the above and also in what follows we use the following notation: 
v~)(k, ~o, z) denotes a solution of the linear equations (2) and (3), where 

~ b 

~ ~ a.at 

t ~ ~ ,  a " ~ t 0 

3~ 

37[ 5~" 7~ 5 I ' o k l l  
a r O Y -  : ~- ,  % - ,  ~ ' ' - T  

, ' , r~.~ = O,  ~- , 7T, ~ ,  27r an t i  

Fig. 1. 
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(i) denotes the first or second component as above, (j)  denotes the sector, 
and (k) denotes the type of solution. In general we have two types of 
solutions for our 2 • 2 matrix system. 

The next important step is to write down the basic form of the matrix 
or matrices connecting the solution vectors in several sectors. For this it is 
important to observe that a solution that was dominating in one sector may 
become subdominant when its leading terms are canceled by the contribution 
from the other component in the other sector. This fact dictates that the 
connection matrices are all triangular. Explicitly, we have 

(1 ~) but vs-= vl V5 = I~4 0 

(19) 

for 7r---arg r <3~r/2,  

for 3~r/2-<arg r <2zr, 

and so 

c=a;  d = b  

/.)(21) = b/)~l)-~ - (1 q- ab)~)~ 2) 

/')4(r Z)--~" /)3(~' Z ) (  1 C ~ )  

from which it follows that 

/.)(41) = /)~1)(1 "[- be)  + ( a + c -~ abc)v~ 2) 

r = + (1 + a b ) v 7  

(21) 

(22) 

Now utilizing the symmetry properties noted after equation (18) and taking 
account of (19), we get 

(2o) 
D(41) = /) ~1 ) --~- C/.) ~2) 
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Now crossing this zone, we come back  to the first sector again, hence 

v~ 1~ = v(41) = (1 + bc)v~ 1~ + ( a + c + abc)v~ 2~ 

= + 

= v ~ [ d ( l + b c ) + d ] + [ l + a b + d ( a + c + a b c ) ] v ~  2~ (23) 

These relat ions will be of  much  use when we connect  the solution near  the 
origin to that  at infinity. 

Now f rom equat ion  (17) we observe that  

~(1, ~, z) = v(1, ~o, z ) - j i v ( 2 ,  ~o, z)  In q~ (24) 

where  

j =  2 ~ * ~ - ~ 6  d P - z i r ~ q b , _ k  ] 

x ( i z - 4 i q b *  Cz+�89162  e"-"* 

The logar i thm will d i sappear  i f j  = 0 and k = ~. With the help o f  the sector  
relat ions we obtain  f rom (24) 

M~(1,  ~ e - '~ ,  z) = e2'~k v(1,  ~, Z) -- zrj e-E~ikv( 2, ~, z)  
(25) 

Mt~(2, ~o e - '~,  z) = e-E~rikv(2, ~, Z) 

SO if in the sector  0 --- arg ~ < 2~r the solut ion is ~, then ~3(~ e 2~i, z) =/2(tp, 2)J 
is a fundamen ta l  solut ion in (2~r, 4~r), where  

( e 0 ) 
J = \27rj  e 4i~k e4~ig_ (26) 

It  is interesting to note  that  det J = 1 for  all k. We now seek the matr ix  
connect ing Vo to v~ as 

v~ = voA 

with (27) 

N o w  

so that  

A(; 

det v ~ =  1, 
- 2 ik (  fb~ + lizcb ) 

det Vo - ( iqbfb * + k )( icbqb * - k)  

det A = (ithth* + k)(i~bqb* - k)  
- 2 ik(  c~z + l iz4, ) 
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Then (a, b, c, d, a,/3, % ~, det vo~= 1, and the coefficients of  the asymptotic 
expansions) form the monodromy data for our system. 

Propert ies  o f  the M a t r i x  A 

Now it follows from equation (27) that 

v~(~ e 2~;) = Vo( ~ e2~ i )A  = Vo( q~ ) J A  

and in the last sector 

�9 0 1 

leading to 

0 1 0 1 (: ,)(o l)(O 

(28) 

from which we deduce 

1 = a 6  e 2~rlk + a/37rj e -2~ik -- f12/e-E'~ik 

a = - -2a7 sin(2~k) - 7rja 2 e -2~rik 

b = sin(2qrk) + 7rjfl 2 e -2'~ik 

1 + ab  = - f l y  e 2~rik -- ol/37rj e-2~rikq - Ott~ e -2~rik 

We now set ~p = ~ e -i= in the solution Voo and apply M = (10 1o), taking account 
of  the relations (20)-(23), and obtain the important and fundamental  
relations 

M y  (1) = ( a 8  e2~ik + a/3zrj e -2~ig - /3T e -  2~ik)19(1) 

e 2~ik _ e-2i'nk a 2 n . j  e -2rrik) 13(2) 
+ ( - 2 a ~ ,  2 

e2,t,ik _ e -2~ ik  ) 
M v  (2) = ( 2 p 8  2 I-/327"fj e-2.rrik//9(1) 

+ ( - / 3 7  e 2~ik - a / 3 ~ j  e -2~ik + 8 a  e -2~ik ) v (2) 

(31) 

Until now we have been following the methodology as laid down in Flaschka 
and Newell (1979). But as can be seen clearly, although this approach helps 
to get the properties of  the monodromy data, it is not possible to determine 
the Stokes matrices absolutely. In the next section we show that by taking 
account of  a paper  by Sibuya we can explicitly determine the Stokes matrices, 
which in turn can lead to a complete determination of (a, /3, y, 6), the 
matrix connecting the solutions near zero to that at infinity. 

(30) 

(29) 
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5. SIBUYA'S A P P R O A C H  TO THE STOKES PARAMETERS 

Sibuya (1977; also see Wasow, 1976) treats the equation 

d2v 
d~o2 (~o~ + a ~ ' - l + .  . .+a,_l~+an)~,=O (32) 

under the following assumptions: 
1. The differential equation (32) has the unique solution 

V = V~(~,  a I . . . .  , a ~ )  

2. v is an entire function of the parameters (G a~, a2,. �9  a n) 
3. v admits an asymptotic representation 

v ,=1 n'"uP ] exp[-iEn(q~, t)] 

as ~p tends to infinity in the different sectors, where E~,(~p, t) is represented 
as 

"9 ~+1 
En(G t ) = - - ~  ~(n+2'/z+ ~__ An,.~(n+2-")/2 (33) 

and %. Ann , and B~.. are polynomials in ( a ~ , . . . ,  a . ) .  Now if we put 

( l + a l ~ o - l + . . . + a a ~ p - ~ ) l / 2 = l +  ~ bk~ -k 
k=l 

then the quantities Yn and An,. are given by 

- / x / 4  /x odd 

%" = ~ [ - / x / 4  - btz/2 + 1 /x even 

and 

~-1 2 An, n~(n+2-n)/2-~ bnq9 (n+z-2n)/2, 1 - < n -  ~ + 1  (34) 
,=~ / z + 2 - 2 n  2 

4. If we choose ~b such that exp[i(/x + 2)~b] = 1, then the function v(ff, 
e~6 a~ �9 �9 �9 e~6~" an) is also a solution. 

With 

0 = exp[i2~'/(/z +2)]  

the solution in the Jth sector is given as 

vJ(q~'t)~O-J'~-J~~ l+~n=a Bn'"J~-"/z) 

x exp[(-1)J+liEn0P, a) ]  (35) 

as ~p ~ oo in the sectors. 
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5. The two solutions/)~,j+l and v.,j+2 are linearly independent because 

v.,j+~ is subdominant in the ( j +  1)th sector and v~,j+2 is dominant. There- 
fore, v~, is a linear combination of ~j+~, (~) and ~j+2," (~) 

v~( r t) = c2( t)v~+l + ~( t)vj+: (36) 

cj and ~ are Stokes multipliers. For /z  = 2 

2 b2 exp al 2 - i~- - F(�89 b2)' j even 

cj(al 'a2)= [ 1 [b2 1\ ']  x/27r 
, 2-b2expk 4 -  r(�89 j o d d  

(37) 
_ ~ - i e-=b~ j even, 1 1 

Jc~--[--ie ~rb2 j o d d ,  b2 -  a2 2a2 8 

We have quoted the above result for the sake of clarity. To apply the above 
result we first single second-order equation by an ordinary single second- 
order equation by eliminating any one of the components. 

By eliminating v2, we get 

va~ = {-16~o2+8ztp-4i-z2+l[8i(~b*fbz-q~b*z)-4z~bfb * ] 

+~0 2 

where we have not written down the terms represented by the dots, because 
they will not be important for q~--> co. 

Scaling the variables p and v as 2q~ = ~o' and 4v = v', we arrive at 

-4~'-l(q~bz*-t~*~bz-- ~ q~t~*)+'' "] v~ (39) 

Since this is a scalar equation, we will omit the index 4' and write v. The 
index j in v(j) will denote the sector of the solution as described in Table 
I. We will now utilize the results of Sibuya for equations of the type (39), 
and for that the identification of solutions of (39) with those of (6) is 
essential. If  this is done, then equation (36) along with (37) will yield the 
Stokes parameters. To proceed with the program outlined above, we first 
switch from the vector to the matrix notation for the solutions in (10) and 
(11). 
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The matr ix  solut ion is constructed as 

.. //)11 /)12~ 

v"  = \ v21 v22] 

where 

is actually ~(1, z, q~) and 

(40) 

/)21] 

( /)12~ 

/)22/ 

is equivalent  to !3(2, z, ~) ,  in both  the exact  and  the asympto t ic  situations. 
As before,  the index ( j )  in 

(/) Jfi 

will denote  the solut ion in the j t h  sector. 
N o w  in our  par t icular  case we have 

11__ 1 1 -  x2 ( 4 1 )  /)(1) --/)(o) -i- a/)(o ) 

and f rom equat ion  (36) 

o r  

/)(--1) = C-l/)(0) 3L C-l/)(1) (42) 

But 

Fur thermore ,  

,2 _ ,2 + b/)~) (44) 
/ ) ( 2 )  - -  /)(1) 

1 
/)(1), /)(2) = ~ 12 

tq~ 
_ 11 12 (44a) /)(3) -- t~O), /)(4) = / ) (2)  

1 C_ 1 
V(1) : E /)(-1) -- ~_1 ~)(0) 

11 11 _ and x2 But we have  the identification V(o)= v(_l), v( l ) -v(1) ,  V(o) = (-i4~)V(o).  

These equat ions ,  when coupled  with (42) and  (41), yield 

1 
a = i--~ c,G c-1 = 1 (43) 
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Now 

/)(2) = C2/)(3) "~ 52/)(4) 

Comparing (44) and (45) with the help of (44a), we get 

b = - i~c2,  52 = - 1 

Similarly we deduce 

1 
C = - ~  r 5_1=1 

775 

(45) 

(46) 

(47) 

d = - iq~c6, 5 6 =- - 1 

where the q are given by equation (37) with 

z ,(. 
bl= -~, b2=~ ~- 

It is quite important to observe that our explicit determination of the Stokes 
parameters respects our earlier derived constraints, a = c and b = d. Further- 
more, if these explicit values are used in (31), then it is in principle possible 
to determine (a, ~, 3/, 8), which was not the case of the Flaschka-Newell 
approach. 

. PROPERTIES OF THE MONODROMY DATA 

1. The matrix functions vj are holomorphic in 

( j)  Sj= r [ r  

such that 

)(o ~ o) 
~o e -~ 

0 = 2 i r 1 6 2  as I ~ o [ ~  in Sj 

and v;+l = vjAj, 
2. A matrix function to of the form 

,o(r = ~o(~)~ o 

(48) 

o) 
2 k  (49) 

with ~(~o) holomorphic, such that for ~o c $1, / ) 1 ( ~ )  = w ( ~ o ) A ,  with 

( i~bga * + k )(  i(b& * - k )  
det A -  - 2 i k ( ~ b z + � 8 9  (50) 
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3. The solution matrix v(q~) has the symmetry 

M~*(r  = t~(~p), M=(01 10) (51) 

4. Aj matrices are independent of Z. So, differentiating vj+l = v~A~ with 
respect to z and multiplying by -1 / ' ) j + l ,  w e  get 

--1 - -  --1 
I ) j + l z l ) j +  1 - -  D j z A j I , ) j +  1 

= v j z A j ( v j A j )  - 1 =  VjzV~ q (52) 

so that VjzV] 1 is well defined in a deleted neighborhood of ~p = oo and its 
asymptotic expansion is that of 5~v -t uniformly for I~l>p. Now using 
(48) and its z derivative, we have 

=(~i ,~ i~) (53) 

which is nothing but the matrix occurring in the L operator pertaining to 
the NLSE. Similarly, near r = 0, we have 

~oz~o -1 = o3zo3 -1 = ~(r  

with 

( 1 i i~b t 
= -2--~ P 2~p (e  ~ 0 

!~b'2r l + ~ J  \ 0  e~ (54) 

Evaluating zT#~ -1, we observe that ~ - 1  is equal to the time part of the Lax 
operator. Thus it is enough to demonstrate that the nonlinear equation is 
a result of isomonodromy deformation of the linear problem. 

Writing out the contour integrals over the contours shown in Figure 
2, we can prove the following [we do not give the details of the computation, 
since the considerations of Ablowitz (1983) remain almost unaltered): 

~b* = - lim 2i~v 2 e - ~  

(55) 
~b = lim 2 i r  2 e ~ 

~--~oO 

and finally we obtain 1; 
~) = - - -  e x p ( 4 i q ~ 2 - 2 i ~ o z )  d ~  = e x p ( - i z 2 / 2 )  (56) 

" ~  Cl 3 

which satisfies both equations (6) and (7). 
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C$ 

C 2 

rz 
r, 

- - /  ci 
r3 r,~ 

Ic4 

Fig. 2. Contour for the integral equation. 

7. CONCLUSIONS 

We have studied in detail the monodromy problem related to the 
nonlinear Schr6dinger equation and Painleve IV, through similarity vari- 
ables. Though the general problem of the deformation of second- and 
third-order equations has been studied by the Japanese school, we think 
that the above analysis helps to clarify special features that may arise in 
particular nonlinear problems. 
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